Errors as Data Values as the Language Default *

Tero Hasu and Magne Haveraaen

Bergen Language Design Laboratory
Department of Informatics
University of Bergen, Norway
http://www.ii.uib.no/~{tero,magne}

Abstract

A “thrown” exception is a non-local side effect that complicates static reasoning about
code. In some programs errors are instead propagated as ordinary values. Such propagation
is sometimes done in monadic style, and some languages include syntactic conveniences for
writing expressions in that style. We sketch a language-based failure management approach
in which error-monad-resembling transparent error value propagation is made the language
default. The approach accommodates language designs with all-referentially-transparent
expressions, and syntactic conveniences resembling those of traditional exception mech-
anisms. Our proof-of-concept implementation of the approach is furthermore capable of
automatically checking data invariants and function pre- and post-conditions, recording
a trace of the failed or unevaluatable expressions caused by an error, and in some cases
retaining “bad” values for potential use in recovering from an error.

1 Bad-Value-Extended Data Types as a Convention

A number of mainstream languages include a try/catch-style facility for intercepting non-local-
returning, exceptional control transfers triggered by errors. Propagating error information using
such mechanisms comes at the cost of making static reasoning about code harder. As exceptions
are side effects, referential transparency (RT) of expressions that may throw is lost; this means
that replacing an expression by its value may not preserve program semantics, as the value may
not capture everything that the evaluation of an expression does.

A more traditional alternative is to report errors through return values, by having some
values of the return type signify an error. While this approach preserves RT, it also tends to
involve tedious, explicit checking and propagation of error return values. One may be able to
encapsulate the tedious work within an abstraction, but the abstraction can only encompass
operations for which there is a known way of determining which return values indicate an error.
A simple way to enable such determination is to augment (in a general way) each return type
to have a carrier set that is a disjoint union of values that are explicitly good or bad.

For example, for a potentially-failing Haskell function whose successfully computed values
are of type Integer, we might specify the return type Result Integer, with the type constructor
Result defined as shown below. In the definition, the parameter t is the type of the good
“payload,” and Error is the type of an error information object.

data Result t = Good t | Bad Error
Result can be made into an error monad by defining the operations of the Monad type

class with the appropriate semantics. The monad then encapsulates implicit actions to check
for Good function arguments, and to propagate any Bad arguments while skipping subsequent,

*This research has been supported by the Research Council of Norway through the project DMPL—Design
of a Mouldable Programming Language.



Errors as Data Values as the Language Default Hasu and Haveraaen

unevaluatable function applications. It is not especially convenient to write monadic expressions
such asmv >>= (\x -> £ x >>= (\y > g y)), but with Haskell’s do notation as syntactic sugar
one may instead write do x <- mv; y <- £ x; g y. This is more convenient, but not uniform;
the programmer has both monadic and “bare” values to deal with, and different syntaxes for
monadic and non-monadic expressions (cf. the above expressions versus g (£ mv)).

We note that the Result type constructor is universal: any type can be augmented with a
set of error values by “wrapping” it in Result. What if we made use of this power for purposes
of uniformity, and adopted a language-wide convention of computing with Result-wrapped
values? We have been exploring this question, by devising and experimenting with various
language-integrated mechanisms to support such a convention.

Two particularly useful, orthogonal kinds of such language-based support are transparent
propagation of error values, and automated adaptation to other error reporting conventions,
which we discuss in sections[I.I]and [T.2} respectively. Designing and implementing such support
is made easier by consistency of convention and explicit badness of values: it is sufficient to only
have “monadic” expression syntax, which can for the most part be made to look conventional,
while still having it express Result processing; and generating code to check for a bad value
requires no context, but merely the insertion of a single, known predicate check.

Our approach seems most promising for languages focused on supporting static reasoning,
in that such languages benefit from RT preservation and simple, uniform rules for error man-
agement. Furthermore, static reasoning opportunities facilitate optimizations to reduce the
readability-hampering code bloat that results from naive implementations of the approach.

We have implemented our language-integrated error management scheme in the form of
Erda!, which is a family of experimental programming languages that have a Racket-resembling
syntax. Erdagyys is a dynamically typed language targeting the Racket virtual machine (VM),
while Erdac, + is a statically typed language that compiles to C++ source code. The imple-
mentation of Erdagyy, is purely based on program transformations expressed in terms of the
host language’s macros, whereas Erdac., additionally relies on a compiler.

1.1 Uniform, Language-Wide Error Propagation

Assuming that every operation (whether user-defined or built-in) consistently reports any fail-
ures via distinctly bad return values, then what remains is to add language support for trans-
parent processing of values that make such an explicit distinction. In our solution the processing
includes checking for bad values, skipping operations that may not be performed, and recording
information about failures and skipped operations inside the processed values, for the benefit
of error reporting and recovery. The processing is performed by (highly portable) code that
the language implementation emits between operations that appear in a program; that code is
similar to the implicit actions encoded in terms of the primitives of an error monad.

In Erdagyy, the literal syntax 0 expresses the constant value (Good 0). The factorial
function, as below, transparently processes Result values throughout; as shown here, it correctly
obeys the convention of reporting errors (in this case its inability to compute z! for any = < 0)
by returning a Bad value, which can be instantiated with raise:

(define (factorial x)
(cond
[(< x 0) (raise ’bad-arg)]
[(= x 0) 1]
[else (* x (factorial (- x 1)))1))

1Code and documentation for Erda is available at https://www.ii.uib.no/~tero/erda-2015/


https://www.ii.uib.no/~tero/erda-2015/

Errors as Data Values as the Language Default Hasu and Haveraaen

In addition to raise, Erdagyy includes a number of other constructs (e.g., a try/catch-
inspired try, and a less familiar on-alert [I]) capable of dealing with Bad values. Bad values may
be stored in variables as normal. By default, a defined function only receives Good arguments?;
for example, the expression (factorial (factorial -1)) only causes factorial to be called
once, as Erdagy)s skips the outer call due to its Bad argument.

In effect, Erdagy)s has extended the implementation of factorial to allow the normal control
flow of the program to proceed irrespective of whether the result is a good value or a bad value.
If it is a good value, the computation will proceed as normal. If the result is a bad value,
the computation can accumulate information about how the value should have been processed
after its inception. In contrast, an error monad has no access to such contextual information;
a language implementation can access even the uncomputable expression itself.

1.2 Declarative Adaptation to Other Conventions

Our language-native error reporting convention concerns both natively defined functions and
foreign primitives. Due to our wholesale adoption of the convention, we wanted to support
a declarative way of statically generating adaptation code for interfacing with functions that
follow other conventions. Our declaration-based abstraction over foreign conventions is modeled
after alerts, as detailed by Bagge et al [I]. An alert may be triggered due to a broken pre- or
post-condition or a thrown exception, as declared. Alerts are propagated as bad data values.

Racket functions can be called from Erdagyys directly, with automatic Result (un)wrapping
of arguments and return values, but any associated alerts have to be declared:

(declare (/ x y) #:alert ([div-by-O on-throw exn:fail:contract:divide-by-zero?]))

The alert facility is also useful within Erdagyy,. For example, rather than invoking raise
explicitly within factorial, we can make it conformant by declaring an alert for it:

(define (factorial x) #:alert ([bad-arg pre-when (< x 0)]) —)

Guarded algebras [2] serve as the formal basis for our declarative checking of failure con-
ditions. Formally, all the applicable data invariants (which may be defined for Erdagys data
types) and alert declarations together induce an idealized guard predicate for every expression.
In practice we need not infer a complete pre-condition for an operation, but can rather have
a code generator precede or surround or follow an operation invocation with all the appropri-
ate individual guard expressions, in order to detect or catch errors. At the same time we can
also insert code to ensure that the appropriate wrapper data type is used for the result, with
available information about any error embedded into the wrapper.

References

[1] Anya Helene Bagge, Valentin David, Magne Haveraaen, and Karl Trygve Kalleberg. Stayin’ alert:
Moulding failure and exceptions to your needs. In Proceedings of the 5th International Conference
on Generative Programming and Component Engineering (GPCE ’06), pages 265-274, Portland,
Oregon, October 2006. ACM Press.

[2] Magne Haveraaen and Eric G. Wagner. Guarded algebras: Disguising partiality so you won’t know
whether it’s there. In Recent Trends In Algebraic Development Techniques, volume 1827 of Lecture
Notes in Computer Science, pages 3—11. Springer-Verlag, 2000.

2Erdagyy also supports declaration of #:handler functions accepting Bad arguments.
3For a formal basis, one might consider factorial as defining a partial algebra for good arguments, with
Erdagy)s doing a free term completion of the algebra for the bad arguments.



	Bad-Value-Extended Data Types as a Convention
	Uniform, Language-Wide Error Propagation
	Declarative Adaptation to Other Conventions


