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Abstract

We introduce the completeness problem for Modal Logic (possibly with fixpoint
operators) and examine its complexity. A formula is called complete, if any
two satisfying processes are bisimilar. The completeness problem is closely
connected to the characterization problem, which asks whether a given formula
characterizes a given process up to bisimulation equivalence. We discover that
completeness, characterization, and validity have the same complexity — with
some exceptions for which there are, in general, no complete formulae. To prove
our upper bounds, we present a non-deterministic procedure with an oracle
for validity that combines tableaux and a test for bisimilarity, and determines
whether a formula is complete.
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1. Introduction

We propose and study two related problems, parameterized with respect to
a logic: the completeness and the characterization problem. We prove matching
upper and lower complexity bounds for these problems for a variety of modal
logics [5] interpreted over a Labelled Transition System (LTS), including the
p-calculus [19], and a collection of well-known epistemic logics [9].

Characteristic formulae are formulae that characterize a process up to some
notion of behavioural equivalence or preorder, which in our case is bisimilarity
[23]: aformula ¢ is characteristic for a process p when every process ¢ is bisimilar
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to p exactly when it satisfies ¢. A construction of characteristic formulae for
variants of CCS processes [23] was introduced in [14]. This construction allows
one to verify that two CCS processes are equivalent by reducing this problem
to model checking. Similar constructions were studied later in, for instance,
[29, 24, 1]. We are interested in detecting when a formula is characteristic for
a certain process. We call this the characterization problem and we determine
its complexity for a representative collection of logics, including a selection of
modal logics without recursion and the p-calculus [19].

The completeness problem is similar to the characterization problem. For a
logic L that is interpreted over an LTS, we call a formula ¢ complete when for
every formula 1 on the same propositional variables as ¢, we can derive from ¢
in L either the formula v or its negation. Asking whether a formula is complete
for a modal logic is the same as asking if any two processes that satisfy it are
bisimilar to each other. Therefore, a complete formula is characteristic if and
only if it is satisfiable. As we see in the following sections, the completeness and
characterization problems, both tend to have the same complexity as validity.

Given Modal Logic’s wide applicability and the importance of logical com-
pleteness in general, we find it surprising that, to the best of our knowledge,
the completeness problem for Modal Logic has not been studied as a computa-
tional problem so far. On the other hand, the complexity of satisfiability (and
thus validity) for Modal Logic has been studied extensively — for example,
see [20, 16, 15]. We examine the completeness problem for several well-known
modal logics, namely the extensions of K by the axioms Factivity, Consistency,
Positive Introspection, and Negative Introspection (also known as T', D, 4, and
5, respectively) — i.e. the ones between K and S5— and their multi-modal
variations. We discover that the complexity of validity and completeness tend
to be the same: the completeness problem is coNP-complete if the logic has
Negative Introspection and and only one box and one diamond modality (which
is the case in classic Modal Logic), and it is PSPACE-complete otherwise. There
are exceptions: for certain logics (namely D, T, and the multi-modal versions
of their extensions), the completeness problem as we define it is trivial, as these
logics have no finite complete theories. On the other hand, when we add the
p-calculus recursive operators to the modal language, we can write complete for-
mulae for all of these logics, an observation that is consistent with [18], where
Ingdélfsddttir et al. show that the fragment of the p-calculus that only uses
greatest fixpoints suffices to construct characteristic formulae for any state of
any finite model.

Part of our motivation for studying the completeness problem also comes
from [3], where Artemov raises the following issue. It is standard practice in
Game Theory (and Epistemic Game Theory) to reason about a game based
on a model of the game description. However, in an epistemic setting it is
often the case that the game specification is not complete; thus any conclusions
reached by examining any single model are precarious. Therefore, Artemov
argues for the need to verify the completeness of game descriptions, and proposes
a syntactic, proof-centered approach, which is more robust and general than a
model-theoretic one, and which is based on a syntactic formal description of the



game. Artemov’s approach is more sound, in that it allows one to draw only
conclusions that can be safely derived from the game specification; on the other
hand, the model-based approach has been largely successful in Game Theory for
a long time. He explains that if we can determine that the syntactic specification
of a game is complete, then the syntactic and semantic approaches are equivalent
and we can describe the game efficiently, using one model. Using the previously-
introduced terminology from concurrency theory, the game specification is, in
that case, characteristic for that model modulo bisimilarity.

For a formula/specification ¢ (for example, a syntactic description of a
game), if we are interested in the formulae we can derive from ¢ (the con-
clusions we can draw from the game description), knowing that ¢ is complete
can give a significant computational advantage. If ¢ is complete and consistent,
for a model M for ¢, formula 1 can be derived from ¢ exactly when 1 is satis-
fied in M at the same state as ¢. Thus, knowing that ¢ is complete allows us
to reduce a derivability problem to a model checking problem, which is easier
to solve (see, for example, [15]). This approach may be useful when we need to
examine multiple conclusions, especially if the model for ¢ happens to be small.
On the other hand, if we discover that ¢ is incomplete, then it may need to be
refined, as a specification.

Normal forms for Modal Logic were introduced by Fine [10] and they can be
used to prove soundness, completeness, and the finite frame property for several
modal logics with respect to their classes of frames. Normal forms are modal
formulae that completely describe the behaviour of a Kripke model up to a given
distance d from a state, with respect to a number of propositional variables.
Therefore, every complete formula without fixpoint operators is equivalent to a
normal form, but not all normal forms are complete, as they may be agnostic
with respect to states located further than d steps away.

We focus on a definition of completeness that emphasizes the formula’s abil-
ity to either affirm or reject every possible conclusion. We can define that a
formula is complete up to depth d for logic L when it is equivalent to a normal
form of modal depth (the nesting depth of a formula’s modalities) at most d.
We can then consider a version of the completeness problem that asks one to
determine if a formula is complete up to a certain depth. If we are interested in
completely describing a setting, the definition we use for completeness is more
appropriate. However, it is not hard to imagine situations where this variation
of completeness is the notion that fits better, either as an approximation of
the epistemic depth agents reason with, or, perhaps, as a description of process
behaviour for a limited amount of time. We examine this variation in Section
7.

Overview. In Section 2, we give the necessary background and definitions. Be-
fore delving into the complexity of the completeness problem for a logic, we must
first answer a more fundamental question: does this logic have any complete
formulae, or are we wasting effort? Section 3 answers this question for each
of the logics that we define in the paper. Section 4 focuses on logics over one
action, with Negative Introspection, but without recursive operators. As that



section demonstrates, Negative Introspection imposes a special structure on the
the models for the logic, which affects our algorithms and sometimes reduces
the complexity of the problem. Section 5 gives a general lower bound for the
complexity of the completeness problem, and upper bounds for logics without
Negative Introspection — but possibly with recursive operators — by a non-
deterministic procedure that uses an oracle from the logic’s validity problem.
Section 6 gives an alternative procedure to decide the completeness problem
for multi-modal logics with Negative Introspection. Section 7 examines certain
variations of the completeness problem, including a discussion of Fine’s normal
forms [10], and concludes the paper. The results of Sections 3, 4, 5, and 6 are
summarized in Table 2.

Differences from [2]. This paper’s results about one-action modal logics without
recursive operators have already appeared in [2]. In this paper, we extend the
results of [2] to multi-modal logics that may have recursive operators; we give a
simpler procedure to decide the completeness (and characterization) problem;
moreover, we make the connection between the completeness and characteriza-
tion problems more prominent.

2. Background

This section introduces the logics that we focus on and the problems that
we examine in this paper, as well as necessary background on bisimulation and
on the complexity of the validity problem for Modal Logic and the p-calculus.
We start by defining the formulae of our logics.

Definition 1. We consider formulae constructed from the following grammar:

o, e L(P):=p | —p | tt | £f | X | oAy | oV
| ()¢ | [ole | pXp | vX.p,

where X comes from a countably infinite set of logical variables, LVR, a from a
finite set of actions, ACT, and p from a finite set of propositional variables, P.
Let PVR be the (countably infinite) set of all propositional variables; therefore,
P C PVR. When AcT = {a}, we may use Oy instead of [a]p, and Q¢ instead
of (). We may write [ACT]|p to mean A ¢ xorl@]ep-

L(P) is a multi-modal version of the language of the p-calculus [19] — or
an extension of pHML [21] with propositional variables. It is the most general
language that we consider in this paper.

We interpret formulae on the states of a labelled transition system (LTS).
An LTS, or model, is a quadruple (PRC, ACT, —, V') where PRC is a set of states
or processes, ACT is the set of actions, -C PRC x ACT x PRC is a transition
relation, and V : PrRc — 2PVR determines on which states a propositional
variable is true. For P C PVR a finite set of variables, Vp : PrRc — 27 is the
restriction of V' on P: Vp(s) = V(s) N P. For simplicity, we assume that PRC
is always finite.



[tt, p]m = Pre, [££, pae = 0, [X, plm = p(X),
lei1nez, plm = [@1, plam N [w2, P, [e1Vep2, plam = [e1, pla U [z, plm,
[lede, plm = {s | Vt. s = t implies ¢ € [[w,p]]/w},

(), Pl = {s | 3t.s S tandt e [[so,pllm},
1 X0, plm = ({5 | S 2 [, plX = Sm} [p, pla = {s | p € V(s)},
X0, plm = J{S | S C [, pIX = SN}, [-p,plm = {s | p & V(s)}.

Table 1: LTS semantics

State nil represents any state that cannot transition anywhere: YaVs. nil £
s. The set of reachable sets from state s by any sequence of 0 or more transi-
tions is called Reach(s), which we assume to be finite for each s. The size of
s is |s| = |Reach(s)|, and |¢| is the length of ¢ as a string of symbols. All our
complexity results are with respect to these measures.

Formulae are evaluated in the context of an LTS M and an environment,
p : LVAR — 2P which gives values to the logical variables. For an environment
p, variable X, and set S C PRrc, we write p[X — S| for the environment that
maps X to S and all Y # X to p(Y). The semantics for our formulae is given
through a function [—] a4, defined in Table 1. The negation —¢ of a formula and
implication ¢ D v (to be read as “p implies 1)”) are constructed as usual, where
[-X, pJm = PrRC\p(X). A formula is closed when every occurrence of a variable
X is in the scope of recursive operator ¥ X or uX. Henceforth we consider only
closed formulae. As the environment has no effect on the semantics of a closed
formula ¢, we write M,s [=aq ¢ for s € [, p] \- If s |Eaq g, we say that ¢
is true, or satisfied, in s. For each of the logics that we consider in this paper,
we assume a fixed LTS that contains all the possible finite behaviours and only
those. That is, we can think of the fixed LTS for the logic as the collection of
(isomorphic copies of) all other LTSs that are suitable for the logic. When the
particular LTSs do not matter, we often omit them from the notation, and we
can assume that we work in that fixed LTS.

For a formula ¢, P(yp) is the set of propositional variables that appear in ¢;
sub(y) is the set of subformulae of ¢ and sub(¢) = sub(¢) U {1 | 1 € sub(p)}.
For ® a nonempty finite set of formulae, A ® is a conjunction of all elements of
® and A 0 = tt; we define \/ ® similarly. The modal depth md(y) of a formula
o without recursion is the largest nesting depth of its modal operators:

md(p) = md(—p) = md(ff) = 0;
md(e A1) = md(p V) = max{md(p),md(¢)}; and
md([e]p) = md({a)p) = md(p) + 1.

For every d > 0, suba(p) = {¢ € sub(p) | md(¢) < d}.



Depending on how we further restrict our syntax, and the LTS, we can
describe several logics. Without further restrictions, the resulting logic is the
p-calculus [19]. The max-fragment (resp. min-fragment) of the p-calculus is
the fragment that only allows the vX (resp. the uX) recursive operator. If
|AcT| = k and we allow no recursive operators (or recursion variables), then we
have the basic modal logic Ky, and further restrictions on the LTS can result
in a wide variety of modal logics (see [4]).

We give names to the following LTS constraints.! For every o € ACT:

D: there is no nil state in the LTS — in other words, — is serial;

T: % is reflexive — in other words, Vs. s — s;

4: % is transitive — in other words, Vs, t,r. (s =t S r = s 5 7);

5: 2 is euclidean — in other words, Vs, t,r. if s = ¢t and s — r, then t — r.

We note that in any LTS that satisfies constraints T, 4, and 5, each — is
an equivalence relation. Though, as we will see in Section 4, even with only
constraints T and 5, we can show that each — is an equivalence relation.

We consider modal logics that are interpreted over LTSs that satisfy a com-
bination of these constraints. Of course, not all combinations make sense: D,
which we call Consistency, is a special case of T, called Factivity. Constraint 4
is Positive Introspection and 5 is called Negative Introspection. Given a logic L
and constraint ¢, L+c is the logic that is interpreted over all LTSs that satisfy all
the constraints of L and ¢. Logic Dy is Ki + D, Ty is Ky + T, K4, = Ki, + 4,
D4, =Ky +D+4 =D +4, S84, =Ky +T+4 =T +4=K4,+ T,
KD45;, = D4, + 5, and S5, = S4; +5. When k£ = 1, we usually omit it
from the subscript of a logic’s name. For L being one of the logics above, L#
is the logic that results from L after we allow recursive operators in the syntax.
Therefore, the p-calculus is K.

From now on, unless we explicitly say otherwise, by a logic or modal logic,
we mean one of the logics we have defined above.

For a logic L and formulae @, 1, we say that 1 is a consequence of ¢ in L
and write ¢ 1 ¢ when for every state s of every LTS M for L, M,s | ¢
implies M, s |= 9. We call a formula satisfiable (reps. valid) for a logic L, if it
is satisfied in some (reps. every) state of an LTS (resp. of every LTS) for L. We
opt for a semantic presentation and therefore do not provide any proof systems
for the logics we examine. The following Theorem 1 justifies our approach. For
the case of the p-calculus, the theorem comes from [19, 30, 32]; for the other
logics, it has a long history and the reader can consult [7, 5].

Theorem 1. Let L be either the p-calculus or one of the logics without recursive
operators. A formula ¢ is valid for L if and only if it is provable in L; ¢ is
satisfiable for L if and only if it is satisfied in a state of a finite LTS for L.

IThese conditions correspond to the usual axioms for normal modal logics — see [5, 4, 9].



2.1. Bisimulation

A classic and important notion of equivalence over states in a variety of
state-transition models is bisimilarity. A binary relation R is a bisimulation
(respectively, bisimulation modulo P) when the following conditions are satisfied
for all (s,s") € R:

o V(s)=V'(s") (resp. Vp(s) = Vi(s')).

e For all a and t such that s % ¢, there exists some #' s.t. (t,¢') € R and
s St

e For all o and #' such that s’ % ¢/, there exists some ¢ s.t. (¢,#') € R and
[e3%
s —t.

We call states s and s’ bisimilar (resp. bisimilar modulo P) and write s ~ s’
(vesp. s ~p §') if there is a bisimulation (resp. bisimulation modulo P) R such
that sRs’. When s and s’ are states of different LTSs M and M’, respectively,
we write (M, s) ~ (M, s") (resp. (M,s) ~p (M',s")) instead of s ~ s" (resp.
s ~p §'), to specify that each state behaves according to the corresponding LTS.
However, the LTS is omitted when it is the same, or it does not matter.

The following simplification of the Hennessy-Milner Theorem [17] gives a
very useful characterization of state equivalence; Proposition 3 is its direct con-
sequence.

Theorem 2 (Hennessy-Milner Theorem). s ~p s’ if and only if s and s’ satisfy
the same formulae (without recursion operators) in L(P).?

Definition 2. We call a formula ¢ characteristic for state s when for every
state t in an LTS for L, s ~p, t if and only if t |= ¢. A formula ¢ is called
complete when for every ¥ € L(P(p)), ¥ or = is a consequence of ¢ in L.

Proposition 3. A formula ¢ is complete for a logic L if and only if for every
two LTSs M and M' for L, and states s € [p] \, and s" € [¢] vp» (M, 5) ~pp
(M, s").

Paige and Tarjan in [27] give an efficient algorithm for checking whether two
states are bisimilar. Proposition 4 is a variation on their result to account for
receiving the set P of propositional variables as part of the algorithm’s input.

Proposition 4. There is an algorithm which, given two states s and s’ and
a finite set of propositional variables P, determines whether s ~p s’ in time
O(IP| - (Is|* + [s'1?) - log(|s| + |s']))-

Definition 3 (Characterization, Completeness). The characterization problem
for L is the following: Given a formula ¢ and a state s, is ¢ characteristic for
s? The completeness problem for L is: Given a formula ¢, is ¢ complete?

2We remark that we assume only LTSs that are finite — and therefore also image-finite.



2.2. The Complezity of Satisfiability

For logic L, the satisfiability problem for L, or L-satisfiability is the problem
that asks, given a formula ¢, if ¢ is satisfiable. Similarly, the validity problem
for L asks if ¢ is valid.

The classical complexity results for Modal Logic are due to Ladner [20], who
established PSPACE-completeness for the satisfiability of K, T, D, K4, D4,
and S4 and NP-completeness for the satisfiability of S5. Halpern and Régo
later characterized the NP-PSPACE gap for one-action logics by the presence or
absence of Negative Introspection [16], resulting in Theorem 5.

Theorem 5 ([20, 16]). IfL € {K, T,D,K4,D4,S4}, then L-validity is PSPACE-
complete and L + 5-validity is coNP-complete.

Theorem 6 ([15]). If & > 1 and L has a combination of constraints from
D, T,4,5 and no recursive operators, then Ly-validity is PSPACE-complete.

Remark 1. We note that Halpern and Moses in [15] only prove these bounds
for the cases of Ky, Tk, S4;, KD45,, and S5;. However, it is not hard to see
that their methods also work for the rest of the logics of Theorem 6. |

The following theorems give the complexity of validity for the u-calculus and
its fragments.

Theorem 7 ([19]). The validity problem for the u-calculus is EXP-complete.

Proposition 8. The validity problem for the min- and max-fragments of the
p-caleulus is EXP-complete, even when |AcT| =1 and P = ).

Proof sketch. It is known that satisfiability for the min- and max-fragments of
the p-calculus (on one or more action) is EXP-complete. It is in EXP due to
Theorem 7, and these fragments suffice [28] to describe the PDL formula that
is constructed by the reduction used in [11] to prove EXP-hardness for PDL.
Therefore, that reduction can be adjusted to prove that satisfiability for the min-
and max-fragments of the p-calculus is EXP-complete. It follows that validity
for the min- and max-fragments of the p-calculus (on one or more action) is
also EXP-complete. To see that this lower bound transfers to the fragment with
one action and without variables, we can encode a one-action formula with k
variables into one without any, by replacing each O by 0F+! and each ¢ by
OF+1, and for each 1 < i < k, p; by O'Off. It is then not hard to see that this
encoding is satisfiability-preserving. O

To the best of our knowledge, there are no complexity results for the validity
of logics with both LTS constraints and recursion operators. However, it is not
hard to express in such logics that formula ¢ is common knowledge, with formula
vX.o A[AcT]X. Since validity for Lj with common knowledge (and without
recursive operators) and k > 1 is EXP-complete [15]%, L# must be EXP-hard.

3Similarly to Remark 1, [15] does not explicitly cover all these cases, but the techniques
can be adjusted.



Lemma 9. Validity for Ll, where k > 1, is EXP-hard.

We conjecture that validity is EXP-complete for these logics, possibly even
when k£ = 1, but proving such bounds for validity falls out of the scope of this
paper.

In the following, when P is evident from the context, we will often omit any
reference to it and instead of bisimulation modulo P, we will call the relation
simply bisimulation.

3. The Completeness Problem and Triviality

A first and fundamental question that we need to answer concerning the
completeness problem for L is whether there are any satisfiable and complete
formulae for it. If the answer is negative, then the problem is trivial. We examine
this question with parameters the logic L and whether P, the set of propositional
variables we use, is empty or not. If for some logic L the problem is nontrivial,
then we give a complete formula @% that uses exactly the propositional variables
in P. We see that when P = (), completeness can become trivial for another
reason: for some logics, when P = (J, all formulae are complete. On the other
hand, when P # (), the formula A P is incomplete for every logic.

8.1. Completeness and K

Whether P = () or not, completeness is nontrivial for K; and K4;: let
Pk = PR = A P A [AcT]Ef for every finite set P of propositional variables.

Formula tt is incomplete for K; and K4;.
Lemma 10. Formula @I}gk 1s complete and satisfiable for Ky and for K4.

Proof. A state that satisfies @5* is s, where V(s) = P and Vt. s /4 t. If there
is another state s’ |= ¢5*, then s’ |= [ACT]££, so there are no transitions from
s'; therefore, R = {(s,s')} is a bisimulation. O

Notice that if ¢ is complete for L, then it is complete for every bisimulation-
invariant extension of L. Therefore, <p11§’“ is complete for all the other logics on
k actions. However, we are looking for satisfiable and complete formulae for the
different logics, so finding one complete formula for Kj, is not enough.

Lemma 11. Formula A\ P A [ACT]ff is complete and satisfiable for the -
calculus.

Proof. Similar to the proof of Lemma 10. O

On the other hand, if L' is an extension of L (by a set of LTS restrictions)
and a formula ¢ is complete for L and satisfiable for L, then we know that ¢ is
satisfiable and complete for all logics between (and including) L and L’. Unfor-
tunately, the following lemma demonstrates that we cannot use this convenient
observation to reuse @'s* — except for K5; and K45, (see Lemma 19).



8.2. Completeness and Consistency with no Introspection
When L has restriction 7" or D, but neither 4 nor 5, P determines if a
satisfiable formula is complete.

Lemma 12. Let L be either Dy or Tk. A satisfiable formula ¢ is complete
with respect to L if and only if P(p) = 0.

Proof. When P = (), all states in an LTS for Dy, or T}, are bisimilar through the
total bisimulation; therefore, all formulae ¢ with P(p) = @ are trivially complete
as every two satisfiable formulae in L(f)) are logically equivalent. We now con-
sider the case for P # (; first assume that L = Dg. Let M = (W, AcT,—,V)
be an LTS for Dy. Let d = md(p) and let s |= ¢; let © ¢ Reach(s)*, so = s,
and

Mg ={so---s, € W*|k<dandforall 0 <i<k, Ja € ACT. 5; = 5;,1}.
Then, we define M; = (W', Act, —',V{) and My = (W', AcT,—', V3), where
W' =T, U{z};
LN {(zt,2tt") e W2 |t S '} U {(s081---5a,7) € W?} U {(2,2)}

V/(zt) =V(t), fori=1,2, 0<|z| < d;
Vi(z) =0; and Vy(x) = P.

If L = T, the difference is that the transition relation for o must be defined
as the reflexive closure of i>I7 as defined above. The remaining arguments
are the same. To prove that Mj,s | ¢ and Ma,s = ¢, we prove that for
Y € sub(p), for every i = 1,2 and z = sg - - - s € [y, where k < d — md(v)),

M;,zE¢ ifand only if M, s, E .

We use induction on . If ¢ is a literal or a constant, the claim is immediate and
so are the cases of the A,V connectives. If ¥ = [a]y’, then md(v)') = md(¢) —1;
M,z |E o iff for every z LN 2, M, 2 = iff for every s = t, Mt E ¢
(by the Inductive Hypothesis) iff M, sy |= 9; the case of ¢p = ()1’ is similar.
If (My,s) ~ (Mg, s) through bisimulation R, then notice that in both M
and My, any path of length at least d + 1 from s will end up at z; therefore,
by the conditions of bisimulation, (M, z)R(Maz,z), which is a contradiction,
since V{(x) # V4 (x). So, ¢ is satisfied in two non-bisimilar states for L, and is
thus incomplete. O

The proof of Lemma 12 relies on the fact that D; and Ty do not allow any
recursive operators, and therefore each formula can describe an LTS up to a
distance equal to its modal depth. On the other hand, if we allow recursion, we
can use it to characterize a single-state LTS that satisfies all propositions. Let
@EZ = @ig =vX. AP A[AcT]X. This formula is satisfiable and complete for
every bisimulation-invariant logic that has at least restriction D.

Lemma 13. Formula @Ez is complete and satisfiable for all L +D and L{+T.

10



8.8. Completeness, Consistency, and Positive Introspection

For every finite P, let ¢B% = p$* = A P AOA P. As the following lemma
demonstrates, pB? is a complete formula for D4 and S4.

Lemma 14. For every finite P, B4 is complete for D4 and S4; all formulae
in L(D) are complete for D4 and S4.

Proof. Let s = ¢B% and s’ |= ¢B%; let R = Reach(s) x Reach(s'); it is not
hard to verify that R is a bisimulation. Notice that if P = (), then ©B* is
a tautology, thus all formulae are complete. Proposition 3 yields that, in that
case, all consistent formulae are tautologies. In fact, Vs, s'. s ~y s', so if [p] # 0,
then [¢] = Pre. O

It is straightforward to see that for one action, pBR* is satisfiable for every
modal logic L: consider a state a, where A\ P holds at every state in Reach(a).
Therefore:

Corollary 15. pP% is satisfiable and complete for every consistent* logic on
one action that extends D4 by a set of conditions for the LTS transitions.?

When k > 1, the situation is similar as for D and T.

Lemma 16. Let L be either D4, or S4y, where k > 1. A satisfiable formula
o 1s complete with respect to L if and only if P(p) = 0.

Proof. The proof is similar to the one for Lemma 12, only we change the defi-
a !
nitions of ITg, W', and — .

My = {(s0,x0) - -+ (88, %) € (W x AcT)* |for all 0 <i <k, 5; =% si41}.

For (sg, ) -+ (Sk, o) € g, 1((s0,0) « - - (Sk, o)) is defined recursively:

1((s0, a0)) = 0;
I(z(s5,0)(Si41, ) = U(2(s4,04)); and
I(2(8iy i) (Sit1, 2it1)) = Uz2(si,u)) + 1, if oy # a1

Then, W/ = {z € Il | I(z) < d} U{z}; and %" is the appropriate closure of
{(2,2'(t,)) €e W'} U{(z,2) | z =z or I(z) = d}. The remaining arguments are
similar to the ones from the proof of Lemma 12. U

4If the logic is not consistent, then it has no models, and therefore ¢4 cannot be satisfiable.
5 Although for the purposes of this paper we only consider a specific set of modal logics, it
is interesting to note that the corollary can be extended to a much larger class of logics.
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8.4. Consistency and Negative Introspection
For a logic L = L’ + 5 on one action, let o& = A P A OO A P.

Lemma 17. For any logic L = L' +5 on one action, ©% is a satisfiable complete
formula for L.

Proof. By Lemma 21, all states are flat, and therefore % is complete. It is
satisfied in state a, where V(a) = P and a transitions exactly to a. O

When P = (), we can distinguish two cases. If L’ € {D,D4, T, S4}, then
go(% is a tautology, therefore all formulae in L(P) are complete for L.6 If L’ €
{K,K4}, by Lemma 21, a state would either satisfy ¢% or Off, depending on
whether it has a transition or not, because it is flat. Therefore, if P = () the
completeness problem for K5 and K45 is not trivial, but it is easy to solve: a
formula with no propositional variables is complete for L € {K5, K45} if it is
satisfied in at most one of the two states for L, which are non-bisimilar modulo

0.
Corollary 18. If P = (), the completeness problem for K5 and K45 is in P.

Lemma 19. Formula A\ P A [ACT] is satisfiable and complete for K5i and
K45.

Proof. A corollary of Lemma 12. O

Similarly to the cases of Dy, Tk, D4g, and S4y, for £ > 1, a formula
is complete for one of the corresponding logics with the addition of Negative
Introspection, if and only if it has no propositional variables.

Lemma 20. Let L be one of Dy, Ty, D4y, and S4y, where k > 1. Formula ¢
is complete for L+ 5 if and only if P(p) = 0.

Proof. Similar to the proofs of Lemmata 12 and 16, taking the accessibility
relation conditions into account. O

8.5. Completeness and Modal Logics: Summary

A logic L has a nontrivial completeness problem if for P # (), there are com-
plete formulae for L. From the logics we examined, logics Dy and Ty, for k& > 0,
and multi-action versions of logics with D and T have trivial completeness prob-
lems, as long as recursion is not allowed in formulae. Table 2 summarizes the
results of this section and of the following sections regarding the completeness
problem. As the table demonstrates, we can distinguish the following cases. For
K}, the completeness problem is non-trivial and PSPACE-complete; this does
not change when we add axiom 4. Once we add axiom D to Ky, but neither
4 nor 5, the completeness problem becomes trivial; adding the stronger axiom
T does not change the situation. Curiously, adding both 4 and D or T to Ky

SThis is also a corollary of Lemma 12, as these are extensions of D and T.
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Logic P=0 P#)

K, K4, | PSPACE-complete PSPACE-complete
Dy, Tk trivial (all) trivial (none)

D4, S4 trivial (all) PSPACE-complete
D4, S4:, k> 1 trivial (all) trivial (none)
K5, K45 in P coNP-complete

K5, K45,, k > 0 | PSPACE-complete PSPACE-complete
L;+5 L) #K, K4 trivial (all) coNP-complete
Ly+5 L#K K4, k>1 trivial (all) trivial (none)
(min-, max-) p-calculus EXP-complete EXP-complete

L, k>1 varies EXP-hard, NPSPACE®

Table 2: The complexity of the completeness problem for different logics. Trivial (all) indicates
that all formulae in this case are complete for the logic; trivial (none) indicates that there
is no satisfiable and complete formula for the logic. C is the complexity class for which the
validity problem for LZ is C-complete. These results are given in Theorem 26, Proposition
27, Lemma 9, and Corollaries 30, 31, and 42.

makes the completeness problem PSPACE-complete again, except when P = ()
or k > 1. Regardless of other axioms, if the logic has Negative Introspection,
completeness is coNP-complete — unless P = () or k > 1, when the situation
depends on whether the logic has D (or the stronger T') or not. As Lemma 11
demonstrates, the p-calculus and its min- and max-fragments have non-trivial
completeness problems. In general, adding recursive operators to the language
always allows us to write complete formulae, an observation which is consis-
tent with the results in [18], where it is shown that the max-fragment of the
p-calculus suffices to give characteristic formulae for any state.

4. The Completeness Problem and Negative Introspection: The One-
action Case

In this section, we explain how to adapt Halpern and Reégo’s techniques
from [16] to prove similar complexity bounds for the completeness problem for
logics on one action, no recursive operators, and with Negative Introspection.
Thus, we assume in this section a logic L without recursive operators, and
that |[AcT| = 1. In the course of proving the coNP upper bound for logics
with Negative Introspection, Halpern and Régo describe in [16] a construction
that they attribute to Nagle and Thomason [26], which provides a model of a
particular form for a satisfiable formula. From this construction, we can extract
Lemma 21 to follow.

For a logic L 4+ 5, we call a state s in an LTS for L 4+ 5 flat when there is a
set of states W, such that:

e Reach(s) = {s} UW;

e the restriction of — on Reach(s) is RU E, where R C {s} x W and FE is
an equivalence relation on W; and
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o if L € {T,S4}, then s € W.
Lemma 21 informs us that all states are flat for logics with restriction 5.
Lemma 21. In an LTS with restriction b, every state is a flat state.

Proof. Let W = {t € Reach(s) | 3t'€Reach(s). t' — t}. Therefore Reach(s) =
WU {s} and if L € {T,S4}, then s € W. Since restriction 5 is in effect, — is
euclidean. Therefore, the restriction of — on W is reflexive. This in turn means
that — is symmetric in W: if t1,t; € W and t; — to, since t; — t, we also have
to — t1. Finally, — is transitive in W: if ¢t — t5 — t3 and t1,t2,t3 € W, then
to — t1, so t; — t3 by 5. Therefore — is an equivalence relation when restricted
on W and we are done. O

The construction from [20] and [16] continues to filter the states of W, result-
ing in a small state for a formula . Using this construction, Halpern and Régo
prove Corollary 22 [16, Theorem 3.1]; the coNP upper bound for L + 5-validity
of Theorem 5 is a direct consequence. We present the proof of this result for
completeness, and because it is of importance for what follows.

Corollary 22. Formula ¢ is L + 5-satisfiable if and only if it is satisfied in a
flat state of size at most O(|p|) in an LTS for L + 5.

Proof. The “if” direction is immediate. To prove the other direction, we con-
tinue from the proof of Lemma 21. If W = (), then we are done. Otherwise,
let S be the set which contains every Qv subformula of ¢ that is true in s
and every [y subformula of ¢ that is not true in s; let T, be the set which
contains every (v subformula of ¢ that is true in some state of Reach(s) and
every [t subformula of ¢ that is not true in some state of Reach(s). For every
Oy € Sp we fix a state sy, € W, such that s — sy and where 9 is true; for
every [y € Sy we fix a state sy, € W, such that s — s, and where 9 is not
true; for every Ov € Ty \ S¢ we fix a state sy, € W, where 1 is true; finally, for
every Oy € Ty \ S we fix a state sy, € W, where 1 is not true. Notice that
each sy, € W and thus it is accessible from every state in W. We construct the
LTS M, = (W,, Act, =, V,,) for L + 5, where

Wy ={s}U{sy € W |Oy € Ty or O € Ty},

—, the restriction of R on W,,, and V,(a) = V(a) for all a € W,,.

It is not hard to confirm that |W,| < |¢|, since |To| < || — 1 (at least
one of the subformulae of ¢ is a propositional variable or £f). Furthermore,
My, s = ¢. Specifically, for all t € W, and ¢ € sub(yp), we prove by induction
on v that M,t |= ¢ if and only if M, t = ¢, where M is the fixed LTS for
L + 5. Propositional cases are easy. If ¢ = Ox and M,t |= 1, then there is
some t,, such that M,t, = x and by the definition of ¢, ¢ — t,, therefore
by the inductive hypothesis, M, t, = x and thus M, t =. If ¢ = Ox and
Mo, t = ¢, then there is some t —, ¢ € W, such that M, c |= x; by the
inductive hypothesis, M, ¢ |= x and since —, is the restriction of — on Wi,
t — ¢, so M,t = 1. The cases where ¢ = [y are similar.
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What remains is to demonstrate that M, remains an LTS for L + 5. It
is not hard to confirm that through this filtering, transitivity, euclidicity, and
reflexivity are preserved for —, (since they are preserved by restrictions on
subsets of binary relations). As for seriality, it is enough to run this construction
on p AQtt if necessary, thus increasing the upper bound on the number of states
from |p] to || + 1. O

Since we ask whether a formula is complete, instead of whether it is sat-
isfiable, we want to be able to find two small non-bisimilar states for ¢ when
© is incomplete. In order to do so, it is useful to have a characterization of
bisimilarity between flat models.

Lemma 23. Flat states s and s’ are bisimilar modulo P if and only if Vp(s) =
Vp(s') and:

e Vit € Reach(s) 3’ € Reach(s'). Vp(t) = Vi(t');
e Vt' € Reach(s’) 3t € Reach(s). Vp(t) = VL(t');

e VicReach(s), if s — t, then It'€Reach(s’). s — t' and Vp(t) = Vp(t');
and

e Vi'€Reach(s'), if s — t', then IteReach(s). s = b and Vp(t) = VL(t').

Proof. If these conditions are met, we can define bisimulation R such that sRs’
and for t € Reach(a) and t' € Reach(s’), tRt" iff Vp(t) = Vp(t'); on the other
hand, if there is a bisimulation relating s and s’, then it is not hard to see that
these conditions hold by the definition of bisimulation — for both claims, notice
that the conditions above, given that the states are flat, correspond exactly to
the conditions from the definition of bisimulation. O

This gives us Corollary 24 below, which is a useful characterization of in-
complete formulae.

Corollary 24. Formula ¢ is incomplete for a logic L on one action, Negative
Introspection, and with no recursive operators, if and only if there are two flat
states s and s’ in an LTS for L, whose size is O(|¢|) such that

1. s and s’ satisfy ¢, and

2. s and s’ are not bisimilar modulo P(p).

Proof. If ¢ has two non-bisimilar states, then by Proposition 3, it is incomplete.
On the other hand, if ¢ is incomplete, again by Proposition 3 and Lemma 21, ¢
has two non-bisimilar flat states, s and s’. We will now construct a distinguishing
formula v for s and s’. By Lemma 23 and without loss of generality, we can
distinguish three cases:

e there is some p € Vp(s) \ Vp(s'): in this case, let ¢ = p;
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e there is some ¢, such that s — ¢ and for all ¢/, s’ — t' implies Vp(t) #
Vp(t'): in this case, let

b =0(/\Vet) A= \/(P\ Ve (1);

e there is some ¢ € Reach(s), such that for all ' € Reach(s'), Vp(t) #
Vp(t'): in this case, let

¥ = 00(/\Ve(t) A= \/(P\ Vp(1)).

In all these cases, both ¢ A ¢ and ¢ A =) are satisfiable and of size O(|¢]), so
by Corollary 22, each is satisfied in a non-bisimilar flat state of size O(|p]). O

Our first complexity result is a consequence of Corollary 24 and Proposition
4:

Corollary 25. The completeness problem for logic L on one action, with Neg-
ative Introspection, and with no recursive operators, is in coNP.

5. The Complexity of Completeness

Our main result is that for a modal logic L, the completeness problem has
the same complexity as validity for L, as long as we allow for propositional
variables in a formula and the completeness problem for L is nontrivial (see
also Table 2). For the lower bounds, we consider hardness under polynomial-
time reductions. As the hardness results are relative to complexity classes that
include coNP, these reductions suffice.

5.1. A Lower Bound

We present a lower bound for the complexity of the completeness problem:
we show that the completeness problem is at least as hard as validity for a logic,
as long as it is nontrivial.

Theorem 26. Let L be a logic that has a nontrivial completeness problem and
let C' be a complexity class. If L-validity is C-hard, then the completeness prob-
lem for L is C-hard.

Proof. To prove the theorem we present a reduction from L-validity to the
completeness problem for L. The exceptions are the min- and max-fragments
of the p-calculus, for which the reduction is from the max- and min-fragment,
respectively. From a formula ¢, the reduction constructs in polynomial time
a formula ., such that ¢ is provable if and only is ¢. is complete. For each
logic L with nontrivial completeness and finite set of propositional variables P,
in Section 3 we provided a complete formula ¢%. This formula is satisfied in a
state of size at most 2, which can be generated in time O(|P|). Let st, be such
a state for 5. We assume that P # 0.

All states that satisfy ¢& are bisimilar to s1, (Proposition 3). Given a formula
p € L(P), we determine in linear time if st, = ¢. Then, we have two cases:
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sL £ ¢, in which case ¢ is not valid and we set ¢, = A P.

sL | ¢, 50 —p A ¢k is not satisfiable, in which case we set ¢, = ¢ D k. We
demonstrate that ¢ is valid if and only if ¢ D ¢% is complete.

If o is valid, then ¢ D @b is equivalent to @&, which is complete.

On the other hand, if ¢ D % is complete and a is any state, we
show that a |= ¢, implying that if ¢ D @& is complete, then ¢ is valid.
If s ~p sp, then from our assumptions s & —¢, thus s = ¢. On the
other hand, if s #p sp, since s, = ¢ D ¢% and p D @k is complete,
s~ » D b, therefore s = ¢. O

Theorem 26 applies to more than the logics that we have defined in Section 2.
For Propositional Logic, completeness amounts to the problem of determining
whether a formula does not have two distinct satisfying assignments, therefore
it is coNP-complete. By similar reasoning, completeness for First-order Logic is
undecidable, as satisfiability is undecidable [13].

5.2. Upper Bounds

The purpose of this subsection is to define matching upper bounds for the
logics defined in Section 2. The easiest cases are the logics on one action with
restriction 5. Immediately from Theorem 26 and Corollary 25:

Proposition 27. The completeness problem for a logic L + 5 on one action is
coNP-complete.

For the logics without recursion operators and without restriction 5 or on
more that one action, by Theorem 5, satisfiability and validity are both PSPACE-
complete. So, completeness is PSPACE-hard, if it is nontrivial. It remains to
show that it is also in PSPACE. Similarly, for the p-calculus, its min- and max-
fragments, and for the variants of the other logics with recursive operators,
completeness is EXP-hard; it remains to show that completeness is in EXP for
the p-calculus, and in NPSPACE® for each LY, where validity for LY is in C.
To this end we present two similar procedures that decide completeness for a
formula, depending on whether the logic has Negative Introspection or not. We
call them the CC and CC5 Procedures. Parts of each procedure are similar
to the tableaux by Fitting [12] and Massacci [22] for Modal Logic, in that
the procedure explores local views of a tableau branch. For more on tableaux
the reader can see [8]. The CC and CC5 Procedures are non-deterministic
polynomial space algorithms that use an oracle for the logic’s satisfiability and
validity problems. It accepts exactly the incomplete formulae, thus establishing
the required matching upper bounds for the completeness problem.

The CC Procedure for Modal Logic L on ¢

In this subsection, we present the CC Procedure for a fixed logic L that
does not have Negative Introspection, but may have recursive operators and any
number of actions. Intuitively, the procedure tries to construct two satisfying
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Initialize: | Non-deterministically generate formula states a and b
that include ¢; if there are none, then return “reject”.
If a # b, then return “accept.”
Condition A: | If = th(a) D [ACT|f£, then return “reject”.
Construction: | Non-deterministically generate an a-child ¢ of a.
Condition B: | If & th(a) D («)th(c), then return “accept.”

Next Step: | Otherwise, set a := ¢ and continue from Condition A.

Table 3: The CC Procedure on ¢ for a logic L without constraint 5.

states for ¢ and at the same time demonstrate that these states are not bisimilar.
We first give a few definitions that we need to describe the procedure.

We assume that each fixpoint operator in ¢ applies on a unique recursion
variable, and therefore for each recursion variable X that appears in ¢, there
is a unique fixpoint operator that binds it. Thus, we can define the closure of
a formula ) € sub(y), which we identify with ¢. For our procedure, formula
states are maximally L-satisfiable subsets of sub(p). We say that a formula
state c is an a-child of formula state a when there are LTS states s and ¢, such
that s = a, t = ¢, and s = t. For a formula state a, let th(a) = A\ a.

Lemma 28. For formula state a:

b Zf(pl /\@2 ca, then P1, P2 € a;

e if p1 Vo € a, then ©1 € a or ps € a;

if [a]y € a and L has constraint T, then ¢ € a;

e for every p € P, either p € a or —p € a; and

la] <2 ¢l

Formula state c is an a-child of formula state a if and only if th(a) A{a)th(c)
1s satisfiable.

Proof. By straightforward arguments. O

The procedure generates sets of formulae and ensures that they are formula
states — so that all relevant information is present, due to maximality, and
so that they indeed represent LTS state, due to satisfiability. If the current
state can be satisfied in two non-bisimilar LTS states (say, s and t), then the
procedure should be able to provide a child, representing a state accessible from
s or t that is not bisimilar to any state accessible from ¢ or s, respectively. Since
the formula states are maximally consistent, two states that are not identical
can only be satisfied in non-bisimilar LTS states. The procedure is given in
Table 3.
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Remark 2. The CC procedure is not appropriate for logics with Negative Intro-
spection, as it may accept a formula that is not complete. For example, consider
logic K5 (or, similarly, K55), and let

e=pA-qg AN OpVve) AOD(=pV-g) A Op A Og A OO(—pA—g).

Then, there is only one (up to bisimilarity) way to satisfy ¢: we use states
s,t1,t2,t3, such that s — t1,¢2 and t; — t; for all 1 <4, < 3. Propositional
variable p is true exactly at s and 5, and ¢ is true exactly at ¢;.

It is not hard to see, then, that any other satisfying state for ¢ must be
bisimilar to s. However, assuming the procedure first generates the formula
state that contains all subformulae of ¢ that are satisfied in s, it can then pick
the child state ¢ that is satisfied at ¢;. That child state contains —p, ¢, p V
¢, O(=pA=q), =pV —g, O(=pV —q), OO(=pV =q), O=p, O=g, OO(=p A =q),
and various conjunctions of these formulae. We let the reader verify that these
formulae can derive neither ¢p nor O—-p. Therefore, the procedure can generate
a subsequent child ¢’ that contains p, then see that £ th(c) D Oth(c’), and
therefore accept the input. |

This subsection’s main theorem is Theorem 29 and informs us that our
procedure can determine the completeness of formula ¢ in a finite number of
steps. That the completeness problem for logics without axiom 5 is in PSPACE
is a direct corollary, as at every step of the procedure, we only need to store
a polynomial amount of information, namely up to two formula states and the
size of each state is linear in that of ¢ by Lemma 28. The proof of Theorem 29
is given in Subsection 5.3.

Theorem 29. For a logic without Negative Introspection, the CC Procedure
accepts  if and only if ¢ is incomplete.

Corollary 30. The completeness problem for logic L without Negative Intro-
spection, is in NPSPACE® , where L-validity is in complexity class C.

Proof. The CC Procedure is a non-deterministic polynomial-space algorithm
with an oracle from C. Each condition that it needs to check is either a closure
condition or a condition for the consistency or validity of formulae of polynomial
size with respect to |¢|; therefore, those conditions can be verified either directly
or with an oracle from C. O

Corollary 31. The completeness problem for K, K4, D4, and S4 is PSPACE-
complete; the completeness problem for the p-calculus and its min- and max-
fragments is EXP-complete.

Proof. PSPACE-hardness and EXP-hardness are consequences of Theorem 26.
From Corollary 30, the completeness problem for K, K4, D4, and S4 is in
NPSPACEPSPACE — PSPACE, and for the p-calculus and its min- and max-
fragments it is in NPSPACE®*” = EXP. O
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For the characterization problem, we are given one of ¢’s satisfying states,
so it is a reasonable expectation that the problem became easier. Unfortu-
nately, the characterization problem has exactly the same complexity as the
completeness problem. We can easily reduce characterization to completeness
by dropping the state from the input. On the other hand, the reduction from
validity to completeness of Theorem 26 still works in this case, as it can easily
be adjusted to additionally provide the satisfying model of the complete formula

¢p-

Theorem 32. The characterization problem for logic L without Negative In-
trospection, is in NPSP/—\CEC, where Li-validity is in complexity class C'. Specif-
ically, the characterization problem for Ky, K4;, D4, and S4 is PSPACE-

complete; the characterization problem for the p-calculus and its min- and maz-
fragments is EXP-complete.

5.83. The Proof of Theorem 29

We prove that the CC Procedure has a way to accept ¢ if and only if ¢ is
satisfied in two non-bisimilar states. By Theorem 2, the theorem follows.

We first assume that there are two non-bisimilar pointed states w and w’, such
that w = ¢ and w' = p. We prove that the CC Procedure accepts ¢ in a
finite number of steps. We call the states w and w’ the underlying states, or
model states, to distinguish them from the formula states that the process uses.
Let f : PRC x PRC x ACT — PRC be a partial function that maps every pair
(s,t) of non-bisimilar pairs and action « to a model state ¢ accessible from s or
t by action « that is non-bisimilar to every state that ¢ or s, respectively, can
transition to with o. We call f a choice-function. We can see that the procedure
can maintain that the maximal state it generates each time is satisfied in two
non-bisimilar states s,t: at the beginning these are w and w’. At every step,
the procedure can pick an action & € ACT and an a-child ¢ that is contained
in f(s,t,a). If = th(a) D (a)th(c), then the procedure terminates and accepts
the input. Otherwise, c is satisfied in f(s,¢, ) and in another state that is non-
bisimilar to f(s,t,«). Let that other state be called a counterpart of f(s,t,a).

We demonstrate that if ¢ is incomplete, then the CC Procedure will accept
o after a finite number of steps. As we have seen above, the procedure, given
non-bisimilar states s and t of ¢, always has a child to play according to f.
For convenience, we can assume that the LTS has no cycles, so the choice-
function never repeats a choice during a process run. If for every choice of
f, the process does not terminate, then we show that w ~ w’, reaching a
contradiction. Let R = ~ U Z, where ~ is the bisimilarity relation between
states, and xZy when for some choice-function, there is an infinite execution
of the procedure, in which y is a counterpart of x, or  a counterpart of y. If
xRy, either x ~ y, so Vp(x) = Vp(y), or 22y, so, again, Vp(z) = Vp(y), since
x and y satisfy the same maximal state. If 2Ry and z = 2/, then if z ~ y,
immediately there is some y — y’ so that &’ ~ ¢/; if x is a counterpart of y or y
is a counterpart of x during a non-terminating run, then for every =’ accessible
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from z (the case is symmetric for a y’ accessible from y), either z’ is bisimilar
to some 3’ accessible from g, or we can alter the choice-function f that the
procedure uses so that ' = f(x,y,«). Since for that altered f, the procedure
does not terminate, ' has a counterpart as well. Therefore, the bisimulation
conditions are satisfied and R is a bisimulation. If for every choice-function, the
procedure never terminates, then w ~ w’, and we have reached a contradiction.
Therefore, there is a choice-function f that ensures the procedure terminates
after a finite number of steps. Thus, the procedure can non-deterministically
follow an appropriate choice-function f and accept after a finite number of steps.

On the other hand, we prove that if @ is complete, then the CC Procedure can
never accept . For this, we use the following technical lemmata:

Lemma 33. If s is a formula state and th(s) is incomplete, then there are some
a € AcT and [y € L(P(p)), such that th(s) A[a]y and th(s) A{a)— are both
satisfiable.

Proof. If th(s) is incomplete, then there is some x € L(P(p)) without recursion
operators, such that th(s) A x and th(s) A =x are both satisfiable. We can
then proceed by induction on x to prove the claim. Note that x cannot be a
propositional constant or variable. O

Lemma 34. If a formula state a has a child c, then formula th(a) A (a)th(c)
is satisfiable; if for formula state a, there is some ¥ € sub(yp), such that th(a) A
()1 is satisfiable, then a has a child ¢, such that ¢ € c.

Proof. Immediate from our definitions and Lemma 28. O

Lemma 35. Let s # d be formula states and v a formula. If for some a € ACT,
th(d) A [aly is satisfiable (resp. th(d) A is satisfiable, if L does not have the
constraint 4), then for every B € Act, th(s) A [B](—th(d) V [ay) is satisfiable
(resp. th(s) A [B](—th(d) V ©) is satisfiable).

Proof. We can assume that =y, th(s) D (8)th(d), because otherwise, the lemma
follows immediately. Let M,w = th(s), where M = (W, AcT,—,V) is an
LTS for L. Let D,z | th(d) A [a]y, where D = (W4, ACT, —4, Vy) is an LTS
for L; let M’ = (W U Wy, ACT, —2,V"), where V'(a) = V(a) if a € W and
V'(a) = Va(a) otherwise, and ~35 is (resp. when L has constraint 4, —»5 is the
transitive closure of) the collection of

e all pairs (a,b) € for which b }~ th(d) or v # 8 or w 7@» b,

e all pairs (a,x) for which there is some b € W, such that M,b |= th(d),
wib, and a 2 b, and

e all pairs in L.
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It is not hard to observe that for every a € Wy, (M’ a) ~p«,) (D,a), and
therefore, for every y € sub(y) and a € Wy, M';a = x iff D,a = x. For
convenience, we now abuse notation and consider environments for D, M, and
M’ to be defined on the whole of W’. Then, by induction on the formulae, we
can prove that for every x € sub(p), environment p, and a € W, a € [x, p] \4
iff a € [x, p] »p - In fact, because sub(yp) is closed under negation, for each case
we can simply prove that if a € [x, p] 4, then a € [x, p] .-

The cases for constants, literals, variables and their negations, and boolean
connectives are immediate.

If x = [y]x/, thenif vy # 3, nothing changed. For v = 3, let b be such that a ig
b. If b € W, then by the inductive hypothesis, M’ b = x’. Otherwise, b =

zorz s b, and therefore, there is some ¢ € W, such that M, ¢ |= th(d)

and a 25 ¢. We also have that M,c E X/, and by the maximality of d,
this implies that x’ € d (resp. x, x’ € d when the logic has constraint 4).
Therefore, D,z |= X’ (resp. D,z = x, X’), meaning that M’ b = x/.

The case for y = (7))’ is more straightforward.

If x =vX.X/, then let S = [x,p]\ U [x:p]p- From the semantics of Ta-
ble 1, it suffices now to see that from the inductive hypothesis, S =

IX's p[X = STl pq U IX s p[X = STl € X, p[X = STl

If x = uX.x/, then -y = vX.x" for some X" € sub(p). Then, it suffices to
prove that if M’ a | —x, then M, a = —x, which can be shown similarly
to the previous case.

Therefore, M’, w |= th(s) A [B](=th(d) V [a]v). O
Using similar constructions, one can prove the following lemma:

Lemma 36. Let s # d be formula states and ¥ a formula. If for some a € ACT,
th(s) A (a)th(d) and th(d) A+ are satisfiable, then th(s) A {(a)(th(d) A ) is
satisfiable.

Lemma 37. For formula states s and ¢, for which c is an a-child of s, if th(s)
is complete, then so is th(c).

Proof. To reach a contradiction, we assume that th(s) is complete and th(c) is
not. Then, s # ¢ and by Lemma 33, there is some [S]y) € L(P(y)), such that
th(c) A [B]y and th(c) A (B)—) are both satisfiable. Furthermore, by Lemma
34, th(s) A (a)th(c) is satisfiable. Therefore, by Lemmata 35 and 36, th(s) A
[a](—th(d)V[B]Y) and th(s)A{a)(th(d) A—[B]Y) are both, respectively satisfiable
for some [B]¢, and therefore th(s) is not complete. O

We can now finish the proof of Theorem 29. By Lemma 37, all states that
appear during a run are complete. If at some point, the process picks a child
¢ of a, then by Lemma 34, th(a) A {(a)th(c) is satisfiable; since a is complete,
E th(a) D (a)th(c). Therefore, there is no way for the procedure to accept if
the input formula is complete. O
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Initialize: | Non-deterministically generate formula states a and b
that include ¢; if there are none, then return “reject”.
If a # b, then return “accept.”

Nondeterministically choose some o € ACT.

Condition A: | If =th(a) D [a]ff, then return “reject”.
Construction: | Non-deterministically pick some o € ACT and generate
a full a-child set C of a, such that |C] < |¢].

Condition B: | If |~ th(a) D {(a)th(c) for some child ¢ € C of a, then
return “accept.”

Condition C: | If = th(a) D (a){(a)th(c) for some ¢ € C, then return
“accept.”

Next Step: | Otherwise, non-deterministically pick a ¢ € C and a
B # «a, and set a := ¢ and « := 3, and continue from
Condition A.

Table 4: The CC5 Procedure on ¢ for logic L with constraint 5.

6. Multi-action Logics with Negative Introspection

We now consider the case of be a logic L with restriction 5. We still consider
a formula ¢ that is tested for incompleteness.

As Remark 2 demonstrates, in the presence of Negative Introspection, the
child of a complete state might not be complete. Therefore, the CC5 procedure
maintains a set of sufficiently many children states for a given action a.

For a formula state a, we call a set C' of formula states an «a-child set of a
when for some C' C C, there are states s and s, for every ¢ € C, such that
s |= th(a) and for every c € C, s, |= th(c), for every ¢ € C', s % 5., and for all
e, € C, 5. se. Cis a full a-child set of @ when V{a)y € a. Ic € C'. ¢ € ¢
andVee C. V{ayyp €c. I e C. ¢y € .

For example, for the states s,tq,ts,t3 from Remark 2, if a is the formula
state that is saisfied at s, then a full a-child set of a is C = {¢y, ¢a, c3}, where ¢;
is satisfied at t1, ca at ta, and c3 at t3. The subset C' C C, as described above
would then be {c1,c2}, as these formula states correspond to LTS states that
are directly accessible from s.

We can now describe the CC5 Procedure for logics with constraint 5. See
Table 4. To prove the correctness of the procedure, we require the following
definition and lemmata. First, to prove that if the input formula is incomplete,
then the CC5 procedure can accept, we must know that there is alway a full
a-child set of an appropriate size to generate.

Lemma 38. Let L have constraint 5, « € ACT, and a be a formula state. Then,
there is a full a-child set C' of a, such that |C| < |p].

Proof. Similar to the proofs of Lemma 21 and Corollary 22. O
To show that if the formula is complete, then the procedure can never accept,

we must use a similar argument as for the proof of Theorem 29. There, we had to
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show that the formula state is always complete. However, due to Remark 2, this
in not the case for logics with Negative Introspection. Therefore, completeness
is now preserved through the set of states that we maintain.

Definition 4. Let L have constraint 5 and o« € Act. We call a finite set
{1,-.-, 0k} C L(P) of k formulae a-complete, when for all states s1,..., sk
and tq, ...t in LTSs for L, if for every 1 < i,j < k s; — 55, t = t;, and
si = i and t; = i, then for every 1 <i <k, s; ~p t;.

Lemma 39. Let L have constraint 5, a € AcCT, let a be a formula state, such
that th(a) is complete, and let C be a full a-child set of a. Then, {th(c) | c € C}
s a-complete.

Proof. We prove the contrapositive of the lemma. Let M,s |= th(a), where
M = (W,Act,—,V) and s € W. Let for every c € C, sl € W, and s? € W,
where for ¢ = 1,2, M; = (W;, AcT,—,V;), such that for every ¢,¢ € C,
st 5 8L, My, st = th(c), and W NW; = 0. Let for i = 1,2, M, = (WUW; U
{s'}, AcT, =}, V), where s’ ¢ W U W7 U Wo;

L= B uh v s L u{ts)tDs)
U {(s',s") | L has constraint T'}, for 8 # «, and

i>; = 5, U {(s,s))|ceCandcisachildofa} U {(t,t')e 5 |t#s}
U {(s',s),(s.,8') | c € C and L has constraint T'};

and V/(t) = V(@) ift e W, V/(t) = Vi(t) if t € W;, and V/(s') = an P(p). It is
not hard to see that if 3¢ € C. (M, sl) £ (Ma,s?), then (M],s") £ (M}, s).
To complete the proof of the lemma, it remains to demonstrate that for i = 1, 2,
M, s' = th(a). This can be with a similar induction as in the proof of Lemma

35. O

Lemma 40. Let L have constraint 5, o, 3 € ACT, where o # (3, let C' be a set
of formula-states, such that {th(c) | c € C} is a-complete, and let C' be a full
B-child set of some o’ € C. Then, {th(c) | c € C'} is B-complete.

Proof. Similar to the proof of Lemma 39. O

Using the above lemmata, we can prove the correctness of the CC5 procedure
in a way similar to what we did for the CC procedure:

Theorem 41. Let L have constraint 5. The CC5 procedure accepts ¢ if and
only if ¢ is not L-complete.

Corollary 42. The Completeness problem for a logic L with more than one
action and constraint 5 is PSPACE-complete when recursion is not allowed, and
otherwise, in NPSPACE®, where L*-validity is in C.

Theorem 43. The Characterization problem for a logic L with more than one
action and constraint 5 is PSPACE-complete when recursion is not allowed, and
otherwise, in NPSPACEC, where L* -validity is in C'.
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7. Variations and Other Considerations

There are several variations one may consider for the completeness problem.
One may define the completeness of a formula in a different way, or consider
a different logic, depending on the intended application. One may also won-
der whether we could attempt a solution to the completeness problem by using
Fine’s normal forms [10]. In this section, we will examine some of these varia-
tions on the completeness theme.

7.1. Characteristic Formulae

It may be more appropriate, depending on the case, to check whether a
formula is satisfiable and complete, that is, whether there is a state for which
the formula is characteristic. In this case, we can simply alter the CC Procedure
so that it accepts right away if the formula is not satisfiable. Furthermore,
notice that the reduction used in the proof for Theorem 26 constructs satisfiable
formulae. Therefore, this problem has the same complexity as the completeness
problem, for most cases, as long as satisfiability has the same complexity as
validity.

For logics on one action and with Negative Introspection (and plain Propo-
sitional Logic), this is not necessarily the case. For these logics, the language of
satisfiable and complete formulae is US-complete, where a language U is in US
when there is a nondeterministic Turing machine T, so that for every instance
x of U, x € U if and only if T has exactly one accepting computation path
for 27 [6]: UniqueSAT is a complete problem for US and a special case of this
variation of the completeness problem. The class US is not known to be the
same as coNP.

From now on, we only consider logics on one action.

7.2. Completeness and Normal Forms for Modal Logic
In [10], Fine introduced normal forms for Modal Logic. The sets F& are
defined recursively on the depth d, which is a nonnegative integer, and depend

on the set of propositional variables P (we use a variation on the presentation
from [25]):

FY = /\p/\/\ﬂp|S§P ; and
peES pgS

FEt =Soon N\ 0onO \ | SCFE @€ Fp

@p€eS @w€eS

For example, formula <p11§ = A\ P AOf£f from Section 3 is a normal form in F},.

7"We note that the definition of US is different from UP [31]; for UP, if T" has an accepting
path for x, then it is guaranteed that it has a unique accepting path for x.
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Theorem 44 (from [10]). For every modal formula ¢ of modal depth at most
d, if o is K-satisfiable, then there is some finite S C F&, so that i ¢ < \/ S.

Furthermore, as Fine [10] demonstrated, normal forms are mutually exclu-
sive: no two distinct normal forms from F& can be true at the same state of a
model. Normal forms are not necessarily complete by our definition (for exam-
ple, consider p A Op A Op for P = {p}), but, at least for K, it is not hard to
distinguish the complete ones; by induction on d, one can show that:

Lemma 45. Formula ¢ € F2 is complete for K if and only if md(yp) < d.

Therefore, for K, the satisfiable and complete formulae are exactly the ones
that are equivalent to such a complete normal form. However, using this obser-
vation to test formulae for completeness by guessing a complete normal form
and verifying that it is equivalent to our input formula can be very costly, as
normal forms can be of very large size: |F3| = 2/7l; |F&T = |P| - 21F21; and if
Y € FE, [4] can be up to |P|42|F2~!|. We would be guaranteed a normal form
of reasonable (that is, polynomial with respect to |¢|) size to compare with ¢
only if ¢ uses a small (logarithmic with respect to |¢|) number of variables and
its modal depth is very small compared to |p| (that is, md(p) = O(log™(|¢]))).

7.3. Completeness up to Depth

Fine’s normal forms [10] can inspire us to consider a relaxation of the defi-
nition of completeness. We call a formula ¢ complete up to its depth for a logic
L exactly when for every formula ¢ € L(P(p)) of modal depth at most md(y),
either ¢ =1 or ¢ | —1). Immediately from Theorem 44, we have that:

Lemma 46. All normal forms are complete up to their depths.

Lemma 47. Formula ¢ is satisfiable and complete up to its depth for logic L

if and only if it is equivalent in L to a normal form from F;Dnd(“p).

Proof. From Theorem 44, if ¢ is satisfiable, then it is equivalent to some \/ S,

where S C F}Dnd(“o), but if it is also complete up to its depth, then it can derive a
the normal form ¢ € S; so, = ¢ D4, but also =1 D \/ .S and \/ S is equivalent
to . For the other direction, notice that every normal form in F;nd(“’) is either
complete or has the same modal depth as ¢, so by Lemma 46, ¢ is equivalent
to a normal form. In the first case, it is complete and, in the second case, it is
complete up to its depth. O

Therefore, all modal logics have formulae that are complete up to their
depth. In fact, for any finite set of propositional variables P and d > 0, we can
define % = /\?:0 0% A P, which is equivalent in T and D to a normal form (by
induction on d). Then, we can use a reduction similar to the one from the proof
of Theorem 26 to prove that, for every modal logic, completeness up to depth
is as hard as validity.

Proposition 48. For any complexity class C' and logic L, if L-validity is C-
hard, then completeness up to depth is C'-hard.
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Proof. The proof is similar to the one for Theorem 26 and is by reduction from
L-validity. We are given a formula ¢ € L(P) — and we assume that P # .
For L # T,D, ¢k(d) = ¢% as defined in Section 3; for L = T or D, let
0B (d) = p% as defined above. We also assume an appropriate My, a1, = ¢5(d).
If My, ar [~ ¢, let . = \ P AOtt; otherwise, let p. = ¢ D ¢&(d). For the
second case, if ¢ is provable, then ¢, is equivalent to ¢%(d), which is complete
up to its depth. If . is complete up to its depth, then by Lemma 47, it is
equivalent to a normal form ¢ € F&. So, 9 is equivalent to ¢, = ¢ D ¢&(d),
which is equivalent to =\/ SV ¢%(d) for some S C Fg, by Theorem 44. Since
normal forms are mutually exclusive, \/ S is equivalent to = \/(F&\ S), so 1 is
equivalent to \/(F2\S) V% (d). Therefore, either S = F@& and v is equivalent to
B (d), or F&\ S is a singleton of a normal form equivalent to ¢%(d). In the first
case,  is provable, because for any model M, a, by Theorem 44, M, a |=\/ Fg,
so M,a = ¢. The second case cannot hold, because it would mean that ¢ is
equivalent to ~p%(d), but My, ar, = . O

We demonstrate that this variation of the completeness problem is in PSPACE
when the logic is K; it seems plausible that one can follow similar approaches
that use normal forms for the remaining modal logics. We leave this topic for
future work.

Proposition 49. A formula ¢ is complete up to its depth for K if and only if
o ANOMPHLEE s complete for K.

Proof. Let 1) € F& be a normal form. Then, ¢ A J9F1££ is equivalent in K to
Y+t € FE which is 1 after we replace all 01 in ¢ by O(¢ A Off), where
(NS Fg. Notice that 1,s € Fl‘i are distinct normal forms if and only if

147! are distinct normal forms in F, for every r > d. So, ¢ is complete up
to its depth for K if and only if ¢ A O™ @) H1£f is complete for K. O

7.4. More Logics

There is more to Modal Logic than what we have covered in this paper, so
perhaps there is also more to discover about the completeness problem. We
based the decision procedure for the completeness problem for each logic on a
decision procedure for satisfiability. We distinguished two cases:

e If the logic has axiom 5, then to test satisfiability we guess a small model
and we use model checking to verify that the model satisfies the formula.
This procedure uses the small model property of these logics (Corollary
22). To test for completeness, we guess two small models; we verify that
they satisfy the formula and that they are non-bisimilar. We could try
to use a similar approach for another logic based on a decision procedure
for satisfiability based on a small model property (for, perhaps, another
meaning for “small’). To do so successfully, a small model property may
not suffice. We need to first demonstrate that, for this logic, a formula
that is satisfiable and incomplete has two small non-bisimilar models.
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e For the other logics, we can use a tableau to test for satisfiability. We were
able to combine the tableaux for these logics with bisimilarity-testing to
provide an optimal — when the completeness problem is not trivial —
procedure for testing for completeness. For logics where a tableau gives an
optimal procedure for testing for satisfiability, this is, perhaps, a promising
approach to test also for completeness.

Another direction of interest would be to consider axiom schemes as part of the
input — as we have seen, axiom 5 together with ¢©S% is complete for T, when
no modal formula is.
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